Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Environ Health Perspect ; 132(1): 15002, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38227347

RESUMEN

BACKGROUND: Due to the physical, metabolic, and hormonal changes before, during, and after pregnancy, women-defined here as people assigned female at birth-are particularly susceptible to environmental insults. Racism, a driving force of social determinants of health, exacerbates this susceptibility by affecting exposure to both chemical and nonchemical stressors to create women's health disparities. OBJECTIVES: To better understand and address social and structural determinants of women's health disparities, the National Institute of Environmental Health Sciences (NIEHS) hosted a workshop focused on the environmental impacts on women's health disparities and reproductive health in April 2022. This commentary summarizes foundational research and unique insights shared by workshop participants, who emphasized the need to broaden the definition of the environment to include upstream social and structural determinants of health. We also summarize current challenges and recommendations, as discussed by workshop participants, to address women's environmental and reproductive health disparities. DISCUSSION: The challenges related to women's health equity, as identified by workshop attendees, included developing research approaches to better capture the social and structural environment in both human and animal studies, integrating environmental health principles into clinical care, and implementing more inclusive publishing and funding approaches. Workshop participants discussed recommendations in each of these areas that encourage interdisciplinary collaboration among researchers, clinicians, funders, publishers, and community members. https://doi.org/10.1289/EHP12996.


Asunto(s)
Salud Ambiental , Equidad en Salud , Estados Unidos , Animales , Recién Nacido , Embarazo , Femenino , Humanos , National Institute of Environmental Health Sciences (U.S.) , Edición , Inequidades en Salud
2.
Environ Health ; 22(1): 87, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38098045

RESUMEN

BACKGROUND: Exposure to per- and poly-fluoroalkyl substances (PFAS) has been associated with significant alterations in female reproductive health. These include changes in menstrual cyclicity, timing of menarche and menopause, and fertility outcomes, as well as increased risk of endometriosis, all of which may contribute to an increased risk of endometrial cancer. The effect of PFAS on endometrial cancer cells, specifically altered treatment response and biology, however, remains poorly studied. Like other gynecologic malignancies, a key contributor to lethality in endometrial cancer is resistance to chemotherapeutics, specifically to platinum-based agents that are used as the standard of care for patients with advanced-stage and/or recurrent disease. OBJECTIVES: To explore the effect of environmental exposures, specifically PFAS, on platinum-based chemotherapy response and mitochondrial function in endometrial cancer. METHODS: HEC-1 and Ishikawa endometrial cancer cells were exposed to sub-cytotoxic nanomolar and micromolar concentrations of PFAS/PFAS mixtures and were treated with platinum-based chemotherapy. Survival fraction was measured 48-h post-chemotherapy treatment. Mitochondrial membrane potential was evaluated in both cell lines following exposure to PFAS ± chemotherapy treatment. RESULTS: HEC-1 and Ishikawa cells displayed differing outcomes after PFAS exposure and chemotherapy treatment. Cells exposed to PFAS appeared to be less sensitive to carboplatin, with instances of increased survival fraction, indicative of platinum resistance, observed in HEC-1 cells. In Ishikawa cells treated with cisplatin, PFAS mixture exposure significantly decreased survival fraction. In both cell lines, increases in mitochondrial membrane potential were observed post-PFAS exposure ± chemotherapy treatment. DISCUSSION: Exposure of endometrial cancer cell lines to PFAS/PFAS mixtures had varying effects on response to platinum-based chemotherapies. Increased survival fraction post-PFAS + carboplatin treatment suggests platinum resistance, while decreased survival fraction post-PFAS mixture + cisplatin exposure suggests enhanced therapeutic efficacy. Regardless of chemotherapy sensitivity status, mitochondrial membrane potential findings suggest that PFAS exposure may affect endometrial cancer cell mitochondrial functioning and should be explored further.


Asunto(s)
Neoplasias Endometriales , Fluorocarburos , Femenino , Humanos , Carboplatino/toxicidad , Carboplatino/uso terapéutico , Cisplatino/farmacología , Cisplatino/uso terapéutico , Platino (Metal)/uso terapéutico , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/inducido químicamente , Línea Celular
3.
Cancers (Basel) ; 15(9)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37174030

RESUMEN

Mitochondria are regulators of key cellular processes, including energy production and redox homeostasis. Mitochondrial dysfunction is associated with various human diseases, including cancer. Importantly, both structural and functional changes can alter mitochondrial function. Morphologic and quantifiable changes in mitochondria can affect their function and contribute to disease. Structural mitochondrial changes include alterations in cristae morphology, mitochondrial DNA integrity and quantity, and dynamics, such as fission and fusion. Functional parameters related to mitochondrial biology include the production of reactive oxygen species, bioenergetic capacity, calcium retention, and membrane potential. Although these parameters can occur independently of one another, changes in mitochondrial structure and function are often interrelated. Thus, evaluating changes in both mitochondrial structure and function is crucial to understanding the molecular events involved in disease onset and progression. This review focuses on the relationship between alterations in mitochondrial structure and function and cancer, with a particular emphasis on gynecologic malignancies. Selecting methods with tractable parameters may be critical to identifying and targeting mitochondria-related therapeutic options. Methods to measure changes in mitochondrial structure and function, with the associated benefits and limitations, are summarized.

4.
PLoS One ; 18(5): e0282878, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37205649

RESUMEN

BACKGROUND: Complex systems models of breast cancer have previously focused on prediction of prognosis and clinical events for individual women. There is a need for understanding breast cancer at the population level for public health decision-making, for identifying gaps in epidemiologic knowledge and for the education of the public as to the complexity of this most common of cancers. METHODS AND FINDINGS: We developed an agent-based model of breast cancer for the women of the state of California using data from the U.S. Census, the California Health Interview Survey, the California Cancer Registry, the National Health and Nutrition Examination Survey and the literature. The model was implemented in the Julia programming language and R computing environment. The Paradigm II model development followed a transdisciplinary process with expertise from multiple relevant disciplinary experts from genetics to epidemiology and sociology with the goal of exploring both upstream determinants at the population level and pathophysiologic etiologic factors at the biologic level. The resulting model reproduces in a reasonable manner the overall age-specific incidence curve for the years 2008-2012 and incidence and relative risks due to specific risk factors such as BRCA1, polygenic risk, alcohol consumption, hormone therapy, breastfeeding, oral contraceptive use and scenarios for environmental toxin exposures. CONCLUSIONS: The Paradigm II model illustrates the role of multiple etiologic factors in breast cancer from domains of biology, behavior and the environment. The value of the model is in providing a virtual laboratory to evaluate a wide range of potential interventions into the social, environmental and behavioral determinants of breast cancer at the population level.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/etiología , Encuestas Nutricionales , Factores de Riesgo , Consumo de Bebidas Alcohólicas , Incidencia
5.
Toxics ; 11(4)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37112552

RESUMEN

Milk formation in the breast during breastfeeding is a complex hormonally regulated process, potentially sensitive to the effects of endocrine-disrupting chemical exposures. The environmental chemicals, per- and polyfluoroalkyl substances (PFAS) are known endocrine disruptors. PFAS exposure have been associated with insufficient mammary gland development in mice and reduced breastfeeding duration in humans. The aim of this review was to gather the epidemiological evidence on the association between PFAS exposure and breastfeeding duration. Using PubMed and Embase, we performed a systematic literature search (on 23 January 2023) to identify epidemiological studies examining the association between maternal PFAS exposure and breastfeeding duration. Animal studies, reviews, and non-English studies were excluded. The risk of bias was assessed using the risk of bias in non-randomized studies of exposures tool. Estimates describing the association between PFAS exposure and the duration of breastfeeding were identified, and the data were synthesized separately for each type of PFAS and for the duration of exclusive and total breastfeeding. Six studies with between 336 and 2374 participants each were identified. PFAS exposure was assessed in serum samples (five studies) or based on residential address (one study). Five out of six studies found shorter total duration of breastfeeding with higher PFAS exposure. The most consistent associations were seen for perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA). The finding of a potential causal association between PFAS exposure and breastfeeding duration is in agreement with findings from experimental studies.

8.
Photochem Photobiol ; 99(2): 448-468, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36117466

RESUMEN

Ovarian cancer is the most lethal gynecologic malignancy with a stubborn mortality rate of ~65%. The persistent failure of multiline chemotherapy, and significant tumor heterogeneity, has made it challenging to improve outcomes. A target of increasing interest is the mitochondrion because of its essential role in critical cellular functions, and the significance of metabolic adaptation in chemoresistance. This review describes mitochondrial processes, including metabolic reprogramming, mitochondrial transfer and mitochondrial dynamics in ovarian cancer progression and chemoresistance. The effect of malignant ascites, or excess peritoneal fluid, on mitochondrial function is discussed. The role of photodynamic therapy (PDT) in overcoming mitochondria-mediated resistance is presented. PDT, a photochemistry-based modality, involves the light-based activation of a photosensitizer leading to the production of short-lived reactive molecular species and spatiotemporally confined photodamage to nearby organelles and biological targets. The consequential effects range from subcytotoxic priming of target cells for increased sensitivity to subsequent treatments, such as chemotherapy, to direct cell killing. This review discusses how PDT-based approaches can address key limitations of current treatments. Specifically, an overview of the mechanisms by which PDT alters mitochondrial function, and a summary of preclinical advancements and clinical PDT experience in ovarian cancer are provided.


Asunto(s)
Neoplasias Ováricas , Fotoquimioterapia , Femenino , Humanos , Resistencia a Antineoplásicos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Mitocondrias/metabolismo , Línea Celular Tumoral
9.
Photochem Photobiol ; 99(2): 793-813, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36148678

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are widespread environmental contaminants linked to adverse outcomes, including for female reproductive biology and related cancers. We recently reported, for the first time, that PFAS induce platinum resistance in ovarian cancer, potentially through altered mitochondrial function. Platinum resistance is a major barrier in the management of ovarian cancer, necessitating complementary therapeutic approaches. Photodynamic therapy (PDT) is a light-based treatment modality that reverses platinum resistance and synergizes with platinum-based chemotherapy. The present study is the first to demonstrate the ability of photodynamic priming (PDP), a low-dose, sub-cytotoxic variant of PDT, to overcome PFAS-induced platinum resistance. Comparative studies of PDP efficacy using either benzoporphyrin derivative (BPD) or 5-aminolevulinic acid-induced protoporphyrin IX (PpIX) were conducted in two human ovarian cancer cell lines (NIH:OVCAR-3 and Caov-3). BPD and PpIX are clinically approved photosensitizers that preferentially localize to, or are partly synthesized in, mitochondria. PDP overcomes carboplatin resistance in PFAS-exposed ovarian cancer cells, demonstrating the feasibility of this approach to target the deleterious effects of environmental contaminants. Decreased survival fraction in PDP + carboplatin treated cells was accompanied by decreased mitochondrial membrane potential, suggesting that PDP modulates the mitochondrial membrane, reducing membrane potential and re-sensitizing ovarian cancer cells to carboplatin.


Asunto(s)
Fluorocarburos , Neoplasias Ováricas , Fotoquimioterapia , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Carboplatino/farmacología , Carboplatino/uso terapéutico , Apoptosis , Línea Celular Tumoral , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fluorocarburos/farmacología
10.
Ecotoxicol Environ Saf ; 248: 114314, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36436258

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) comprise a diverse class of chemicals used in industrial processes, consumer products, and fire-fighting foams which have become environmental pollutants of concern due to their persistence, ubiquity, and associations with adverse human health outcomes, including in pregnant persons and their offspring. Multiple PFAS are associated with adverse liver outcomes in adult humans and toxicological models, but effects on the developing liver are not fully described. Here we performed transcriptomic analyses in the mouse to investigate the molecular mechanisms of hepatic toxicity in the dam and its fetus after exposure to two different PFAS, perfluorooctanoic acid (PFOA) and its replacement, hexafluoropropylene oxide-dimer acid (HFPO-DA, known as GenX). Pregnant CD-1 mice were exposed via oral gavage from embryonic day (E) 1.5-17.5 to PFOA (0, 1, or 5 mg/kg-d) or GenX (0, 2, or 10 mg/kg-d). Maternal and fetal liver RNA was isolated (N = 5 per dose/group) and the transcriptome analyzed by Affymetrix Array. Differentially expressed genes (DEG) and differentially enriched pathways (DEP) were obtained. DEG patterns were similar in maternal liver for 5 mg/kg PFOA, 2 mg/kg GenX, and 10 mg/kg GenX (R2: 0.46-0.66). DEG patterns were similar across all 4 dose groups in fetal liver (R2: 0.59-0.81). There were more DEGs in fetal liver compared to maternal liver at the low doses for both PFOA (fetal = 69, maternal = 8) and GenX (fetal = 154, maternal = 93). Upregulated DEPs identified across all groups included Fatty Acid Metabolism, Peroxisome, Oxidative Phosphorylation, Adipogenesis, and Bile Acid Metabolism. Transcriptome-phenotype correlation analyses demonstrated > 1000 maternal liver DEGs were significantly correlated with maternal relative liver weight (R2 >0.92). These findings show shared biological pathways of liver toxicity for PFOA and GenX in maternal and fetal livers in CD-1 mice. The limited overlap in specific DEGs between the dam and fetus suggests the developing liver responds differently than the adult liver to these chemical stressors. This work helps define mechanisms of hepatic toxicity of two structurally unique PFAS and may help predict latent consequences of developmental exposure.


Asunto(s)
Fluorocarburos , Adulto , Humanos , Femenino , Embarazo , Ratones , Animales , Fluorocarburos/toxicidad , Óxidos , Caprilatos/toxicidad , Feto , Polímeros
12.
Curr Environ Health Rep ; 9(4): 535-562, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35984634

RESUMEN

Population studies show worrisome trends towards earlier breast development, difficulty in breastfeeding, and increasing rates of breast cancer in young women. Multiple epidemiological studies have linked these outcomes with chemical exposures, and experimental studies have shown that many of these chemicals generate similar effects in rodents, often by disrupting hormonal regulation. These endocrine-disrupting chemicals (EDCs) can alter the progression of mammary gland (MG) development, impair the ability to nourish offspring via lactation, increase mammary tissue density, and increase the propensity to develop cancer. However, current toxicological approaches to measuring the effects of chemical exposures on the MG are often inadequate to detect these effects, impairing our ability to identify exposures harmful to the breast and limiting opportunities for prevention. This paper describes key adverse outcomes for the MG, including impaired lactation, altered pubertal development, altered morphology (such as increased mammographic density), and cancer. It also summarizes evidence from humans and rodent models for exposures associated with these effects. We also review current toxicological practices for evaluating MG effects, highlight limitations of current methods, summarize debates related to how effects are interpreted in risk assessment, and make recommendations to strengthen assessment approaches. Increasing the rigor of MG assessment would improve our ability to identify chemicals of concern, regulate those chemicals based on their effects, and prevent exposures and associated adverse health effects.


Asunto(s)
Neoplasias de la Mama , Mama , Exposición a Riesgos Ambientales , Contaminantes Ambientales , Femenino , Humanos , Animales , Neoplasias de la Mama/inducido químicamente , Mama/efectos de los fármacos , Mama/crecimiento & desarrollo , Exposición a Riesgos Ambientales/efectos adversos , Densidad de la Mama/efectos de los fármacos , Pubertad/efectos de los fármacos , Contaminantes Ambientales/farmacología
15.
Reprod Toxicol ; 112: 51-67, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35764275

RESUMEN

Work from numerous fields of study suggests that exposures to hormonally active chemicals during sensitive windows of development can alter mammary gland development, function, and disease risk. Stronger links between many environmental pollutants and disruptions to breast health continue to be documented in human populations, and there remain concerns that the methods utilized to identify, characterize, and prioritize these chemicals for risk assessment and risk management purposes are insufficient. There are also concerns that effects on the mammary gland have been largely ignored by regulatory agencies. Here, we provide technical guidance that is intended to enhance collection and evaluation of the mammary gland in mice and rats. We review several features of studies that should be controlled to properly evaluate the mammary gland, and then describe methods to appropriately collect the mammary gland from rodents. Furthermore, we discuss methods for preparing whole mounted mammary glands and numerous approaches that are available for the analysis of these samples. Finally, we conclude with several examples where analysis of the mammary gland revealed effects of environmental toxicants at low doses. Our work argues that the rodent mammary gland should be considered in chemical safety, hazard and risk assessments. It also suggests that improved measures of mammary gland outcomes, such as those we present in this review, should be included in the standardized methods evaluated by regulatory agencies such as the test guidelines used for identifying reproductive and developmental toxicants.


Asunto(s)
Contaminantes Ambientales , Glándulas Mamarias Animales , Animales , Contaminantes Ambientales/toxicidad , Sustancias Peligrosas/toxicidad , Humanos , Ratones , Ratas , Reproducción , Roedores
16.
Front Toxicol ; 4: 881347, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35548680

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) have become ubiquitous environmental contaminants that have been associated with adverse pregnancy outcomes in women and experimental research models. Adverse developmental and reproductive outcomes have been investigated for relatively few PFAS, and such studies are not scalable to address the thousands of unique chemical structures. As the placenta has been reported as a PFAS target tissue, the human placental trophoblast JEG-3 cell line was employed in a high-throughput toxicity screen (HTTS) to evaluate the effects of 42 unique PFAS on viability, proliferation, and mitochondrial membrane potential (MMP). HTTS concentration-response curve fitting determined EC50 values for 79% of tested compounds for at least one of the three endpoints. Trophoblast migratory potential was evaluated for a subset of six prioritized PFAS using a scratch wound assay. Migration, measured as the percent of wound closure after 72 h, was most severely inhibited by exposure to 100 µM perfluorooctanoic acid (PFOA; 72% closure), perfluorooctanesulfonic acid (PFOS; 57% closure), or ammonium perfluoro-2-methyl-3-oxahexanoate (GenX; 79% closure). PFOA and GenX were subsequently evaluated for disrupted expression of 46 genes reported to be vital to trophoblast health. Disrupted regulation of oxidative stress was suggested by altered expression of GPEX1 (300 µM GenX and 3 µM GenX), GPER1 (300 µM GenX), and SOD1 and altered cellular response to xenobiotic stress was indicated by upregulation of the placental efflux transporter, ABCG2 (300 µM GenX, 3 µM GenX, and 100 µM PFOA). These findings suggest the placenta is potentially a direct target of PFAS exposure and indicate that trophoblast cell gene expression and function are disrupted at PFAS levels well below the calculated cytotoxicity threshold (EC50). Future work is needed to determine the mechanism(s) of action of PFAS towards placental trophoblasts.

17.
Oncogene ; 41(25): 3423-3432, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35577980

RESUMEN

Studies have shown that Nrf2E79Q/+ is one of the most common mutations found in human tumors. To elucidate how this genetic change contributes to lung cancer, we compared lung tumor development in a genetically-engineered mouse model (GEMM) with dual Trp53/p16 loss, the most common mutations found in human lung tumors, in the presence or absence of Nrf2E79Q/+. Trp53/p16-deficient mice developed combined-small cell lung cancer (C-SCLC), a mixture of pure-SCLC (P-SCLC) and large cell neuroendocrine carcinoma. Mice possessing the LSL-Nrf2E79Q mutation showed no difference in the incidence or latency of C-SCLC compared with Nrf2+/+ mice. However, these tumors did not express NRF2 despite Cre-induced recombination of the LSL-Nrf2E79Q allele. Trp53/p16-deficient mice also developed P-SCLC, where activation of the NRF2E79Q mutation associated with a higher incidence of this tumor type. All C-SCLCs and P-SCLCs were positive for NE-markers, NKX1-2 (a lung cancer marker) and negative for P63 (a squamous cell marker), while only P-SCLC expressed NRF2 by immunohistochemistry. Analysis of a consensus NRF2 pathway signature in human NE+-lung tumors showed variable activation of NRF2 signaling. Our study characterizes the first GEMM that develops C-SCLC, a poorly-studied human cancer and implicates a role for NRF2 activation in SCLC development.


Asunto(s)
Carcinoma Neuroendocrino , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Animales , Carcinoma Neuroendocrino/patología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Incidencia , Neoplasias Pulmonares/patología , Ratones , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Nucleares/metabolismo , Carcinoma Pulmonar de Células Pequeñas/patología , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/genética
18.
Int J Mol Sci ; 23(9)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35563566

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants associated with adverse reproductive outcomes including reproductive cancers in women. PFAS can alter normal ovarian function, but the effects of PFAS on ovarian cancer progression and therapy response remain understudied. Ovarian cancer is the most lethal gynecologic malignancy, and a major barrier to effective treatment is resistance to platinum-based chemotherapy. Platinum resistance may arise from exposure to external stimuli such as environmental contaminants. This study evaluated PFAS and PFAS mixture exposures to two human ovarian cancer cell lines to evaluate the ability of PFAS exposure to affect survival fraction following treatment with carboplatin. This is the first study to demonstrate that, at sub-cytotoxic concentrations, select PFAS and PFAS mixtures increased survival fraction in ovarian cancer cells following carboplatin treatment, indicative of platinum resistance. A concomitant increase in mitochondrial membrane potential, measured by the JC-1 fluorescent probe, was observed in PFAS-exposed and PFAS + carboplatin-treated cells, suggesting a potential role for altered mitochondrial function that requires further investigation.


Asunto(s)
Ácidos Alcanesulfónicos , Contaminantes Ambientales , Fluorocarburos , Neoplasias Ováricas , Ácidos Alcanesulfónicos/toxicidad , Carboplatino/farmacología , Carcinoma Epitelial de Ovario , Línea Celular , Contaminantes Ambientales/toxicidad , Femenino , Fluorocarburos/toxicidad , Humanos , Neoplasias Ováricas/tratamiento farmacológico
20.
Environ Health Perspect ; 130(2): 25002, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35195447

RESUMEN

BACKGROUND: Despite 20 y of biomonitoring studies of per- and polyfluoroalkyl substances (PFAS) in both serum and urine, we have an extremely limited understanding of PFAS concentrations in breast milk of women from the United States and Canada. The lack of robust information on PFAS concentrations in breast milk and implications for breastfed infants and their families were brought to the forefront by communities impacted by PFAS contamination. OBJECTIVES: The objectives of this work are to: a) document published PFAS breast milk concentrations in the United States and Canada; b) estimate breast milk PFAS levels from maternal serum concentrations in national surveys and communities impacted by PFAS; and c) compare measured/estimated milk PFAS concentrations to screening values. METHODS: We used three studies reporting breast milk concentrations in the United States and Canada We also estimated breast milk PFAS concentrations by multiplying publicly available serum concentrations by milk:serum partitioning ratios for perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), and perfluorononanoic acid (PFNA). Measured and estimated breast milk concentrations were compared to children's drinking water screening values. DISCUSSION: Geometric means of estimated breast milk concentrations ranged over approximately two orders of magnitude for the different surveys/communities. All geometric mean and mean estimated and measured breast milk PFOA and PFOS concentrations exceeded drinking water screening values for children, sometimes by more than two orders of magnitude. For PFHxS and PFNA, all measured breast milk levels were below the drinking water screening values for children; the geometric mean estimated breast milk concentrations were close to-or exceeded-the children's drinking water screening values for certain communities. Exceeding a children's drinking water screening value does not indicate that adverse health effects will occur and should not be interpreted as a reason to not breastfeed; it indicates that the situation should be further evaluated. It is past time to have a better understanding of environmental chemical transfer to-and concentrations in-an exceptional source of infant nutrition. https://doi.org/10.1289/EHP10359.


Asunto(s)
Ácidos Alcanesulfónicos , Agua Potable , Contaminantes Ambientales , Fluorocarburos , Lactancia Materna , Canadá , Caprilatos , Niño , Agua Potable/análisis , Femenino , Humanos , Lactante , Leche Humana/química , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...